fuel injection parts
    Fuel Injection Parts | Products | Contact Us
 
categories
Head rotor

Diesel nozzle

Pencil Nozzle

Delivery Valve

Plunger/Element

VE pump parts

Repair kit

ISO Injector

Nozzle tester

Test bench

secure shipping

       Fuel injection parts :: News
   Search your products here:     

About diesel fuel injection

Fuel injection is a system for mixing fuel with air in an internal combustion engine. It has become the primary fuel delivery system used in automotive petrol engines, having almost completely replaced carburetors in the late 1980s.
A fuel injection system is designed and calibrated specifically for the type(s) of fuel it will handle. Most fuel injection systems are for gasoline or diesel applications. With the advent of electronic fuel injection (EFI), the diesel and gasoline hardware has become similar. EFI's programmable firmware has permitted common hardware to be used with different fuels.
Carburetors were the predominant method used to meter fuel on gasoline engines before the widespread use of fuel injection. A variety of injection systems have existed since the earliest usage of the internal combustion engine.
The primary difference between carburetors and fuel injection is that fuel injection atomizes the fuel by forcibly pumping it through a small nozzle under high pressure, while a carburetor relies on low pressure created by intake air rushing through it to add the fuel to the airstream.
The fuel injector is only a nozzle and a valve: the power to inject the fuel comes from a pump or a pressure container farther back in the fuel supply.

bjectives

The functional objectives for fuel injection systems can vary. All share the central task of supplying fuel to the combustion process, but it is a design decision how a particular system will be optimized. There are several competing objectives such as:
power output
fuel efficiency
emissions performance
ability to accommodate alternative fuels
reliability
driveability and smooth operation
initial cost
maintenance cost
diagnostic capability
range of environmental operation
Engine tuning
Certain combinations of these goals are conflicting, and it is impractical for a single engine control system to fully optimize all criteria simultaneously. In practice, automotive engineers strive to best satisfy a customer's needs competitively. The modern digital electronic fuel injection system is far more capable at optimizing these competing objectives consistently than a carburetor. Carburetors have the potential to atomize fuel better (see Pogue and Allen Caggiano patents).
Benefits

Engine operation
Operational benefits to the driver of a fuel-injected car include smoother and more dependable engine response during quick throttle transitions, easier and more dependable engine starting, better operation at extremely high or low ambient temperatures, increased maintenance intervals, and increased fuel efficiency. On a more basic level, fuel injection does away with the choke which on carburetor-equipped vehicles must be operated when starting the engine from cold and then adjusted as the engine warms up.
An engine's air/fuel ratio must be precisely controlled under all operating conditions to achieve the desired engine performance, emissions, driveability, and fuel economy. Modern electronic fuel-injection systems meter fuel very accurately, and use closed loop fuel-injection quantity-control based on a variety of feedback signals from an oxygen sensor, a mass airflow (MAF) or manifold absolute pressure (MAP) sensor, a throttle position (TPS), and at least one sensor on the crankshaft and/or camshaft(s) to monitor the engine's rotational position. Fuel injection systems can react rapidly to changing inputs such as sudden throttle movements, and control the amount of fuel injected to match the engine's dynamic needs across a wide range of operating conditions such as engine load, ambient air temperature, engine temperature, fuel octane level, and atmospheric pressure.

A multipoint fuel injection system generally delivers a more accurate and equal mass of fuel to each cylinder than can a carburetor, thus improving the cylinder-to-cylinder distribution. Exhaust emissions are cleaner because the more precise and accurate fuel metering reduces the concentration of toxic combustion byproducts leaving the engine, and because exhaust cleanup devices such as the catalytic converter can be optimized to operate more efficiently since the exhaust is of consistent and predictable composition.

Fuel injection generally increases engine fuel efficiency. With the improved cylinder-to-cylinder fuel distribution, less fuel is needed for the same power output. When cylinder-to-cylinder distribution is less than ideal, as is always the case to some degree with a carburetor or throttle body fuel injection, some cylinders receive excess fuel as a side effect of ensuring that all cylinders receive sufficient fuel. Power output is asymmetrical with respect to air/fuel ratio; burning extra fuel in the rich cylinders does not reduce power nearly as quickly as burning too little fuel in the lean cylinders. However, rich-running cylinders are undesirable from the standpoint of exhaust emissions, fuel efficiency, engine wear, and engine oil contamination. Deviations from perfect air/fuel distribution, however subtle, affect the emissions, by not letting the combustion events be at the chemically ideal (stoichiometric) air/fuel ratio. Grosser distribution problems eventually begin to reduce efficiency, and the grossest distribution issues finally affect power. Increasingly poorer air/fuel distribution affects emissions, efficiency, and power, in that order. By optimizing the homogeneity of cylinder-to-cylinder mixture distribution, all the cylinders approach their maximum power potential and the engine's overall power output improves.

A fuel-injected engine often produces more power than an equivalent carbureted engine. Fuel injection alone does not necessarily increase an engine's maximum potential output. Increased airflow is needed to burn more fuel, which in turn releases more energy and produces more power. The combustion process converts the fuel's chemical energy into heat energy, whether the fuel is supplied by fuel injectors or a carburetor. However, airflow is often improved with fuel injection, the components of which allow more design freedom to improve the air's path into the engine. In contrast, a carburetor's mounting options are limited because it is larger, it must be carefully oriented with respect to gravity, and it must be equidistant from each of the engine's cylinders to the maximum practicable degree. These design constraints generally compromise airflow into the engine. Furthermore, a carburetor relies on a restrictive venturi to create a local air pressure difference, which forces the fuel into the air stream. The flow loss caused by the venturi, however, is small compared to other flow losses in the induction system. In a well-designed carburetor induction system, the venturi is not a significant airflow restriction.
Fuel is saved while the car is coasting because the car's movement is helping to keep the engine rotating, so less fuel is used for this purpose. Control units on modern cars react to this and reduce or stop fuel flow to the engine reducing wear on the brakes.

 

Fuel injection parts | About US | Products | Policy | News | Contact Us

Chinese English spanish

Copyright:2014 CHINA CG AUTO PARTS CO.,LTD,ALL Right Reserved